Integrating Nephelometers
Optical instruments for real-time particulate measurements
AirPhoton nephelometers provide real-time measurements of airborne particulates. Nephelometers use light scattering to measure bulk properties of aerosols including overall size and concentration. We achieve a high degree of sensitivity due to a large angular range and design features which minimize stray light. They are weather hardened for field deployment and can operate over a large range of heat and humidity. They are deployed globally by both the SPARTAN network and NASA’s MAIA mission.
We produce several different models of nephelometers. Our more advanced models allow for data collection at multiple size cuts. When combined with the GRASP retrieval algorithm these instruments provide a wealth of information beyond what is possible with a standard nephelometer.
Our nephelometers offer described on this website can be used with our communications module allowing for internet or cell network control and monitoring of the instrument. Our philosophy is to collect and measure particles under ambient conditions. Yet, we can, at additional cost and upon request, provide a nafion tube system to dry the aerosols.
IN101T: AirPhoton Basic Integrating Nephelometer
AirPhoton IN101T is our basic Integrating Nephelometer. It is generally used for simple operations such as determing the bulk properties of aerosols including the overall amount and size of the particles. This instrument is highly valued for its accuracy and reliability, providing essential data for environmental monitoring and research.
It is designed for robust operation under a wide range of conditions. While its rugged design allows for field deployment, it is also a highly sensitive instrument which can be used in the laboratory or modified for use in aircraft. In this regard, the IN101T is highly versatile and can work in different environments and for different purposes.
The IN101T is recommended to use for measurements of all particle sizes at normal ambient conditions as well as for situations where higher pressure intake is required – i.e. high altitudes, clean condition or longinlettubes.
Data sheet
- Dimensions: 9″ x 10″ x 24”
- Mass: 6.7 Kg
- Operating temperature: -30 to +45oC
- Wavelengths: 450, 532, and 632 nm
- Angular range: 7 to 90o ; 90 to 170o
- Full scattering = forward + back scattering
- Standard range: 0.0-3,000Mm-1
- Extended range: 20,000Mm-1 (upon request)
- Lower detectable limit: <0.15 Mm-1 (60 sec AVG); < 0.06 Mm-1 for Backscattering (60 sec AVG)
- Clean air reference option provides automatic zero for span calibration
- Data Interfaces: 4GB SD card, RS485 (optional)
The IN101T can provide forward and back scatter measurements, three wavelenghts and high-speed fan.
We suggest the IN101T for measurements of all particle sizes at normal ambient conditions as well as for situations where higher pressure intake is required – i.e. high altitudes, clean condition or long inlet tubes.
- IN101T flyer – IN101T data sheet.pdf
- Nephelometers flyer – Nepehlometers data sheet.pdf
Fatimah Dinan Qonitan1* , Puji Lestari 2 , and Haryo S.; Evaluation of continuous and filter-based methods for measuring pm2.5 mass concentration in bandung Urban area; Tomo3 Master Program of Environmental Engineering Faculty of Civil and Environmental Engineering, Institut Teknologi Bandung Jalan Ganesha No. 10, Bandung 40132. https://multisite.itb.ac.id/ftsl/wp-content/uploads/sites/8/2015/11/E5_Fatimah-Dinan-et.-al._Evaluation-of-Continuous-and-Filter.pdf
Bazo, J.V. Martins, D. Perez-Ramirez, A. Valenzuela, G. Titos, A. Cazorla, D. Fuertes, M. Weiss, A. Turpie, C. Li, F.J. García-Izquierdo, I. Foyo-Moreno, L. Alados-Arboledas, F.J. Olmo, Optimization of the Polarized Imaging Nephelometer (PI-Neph) for continuous monitoring of multiwavelength aerosol phase functions in support of space polarimetry missions, Atmospheric Environment, Volume 316, 2024, 120181, ISSN 1352-2310, https://doi.org/10.1016/j.atmosenv.2023.120181
Snider, G., Weagle, C. L., Martin, R. V., van Donkelaar, A., Conrad, K., Cunningham, D., Gordon, C., Zwicker, M., Akoshile, C., Artaxo, P., Anh, N. X., Brook, J., Dong, J., Garland, R. M., Greenwald, R., Griffith, D., He, K., Holben, B. N., Kahn, R., Koren, I., Lagrosas, N., Lestari, P., Ma, Z., Vanderlei Martins, J., Quel, E. J., Rudich, Y., Salam, A., Tripathi, S. N., Yu, C., Zhang, Q., Zhang, Y., Brauer, M., Cohen, A., Gibson, M. D., and Liu, Y.: SPARTAN: a global network to evaluate and enhance satellite-based estimates of ground-level particulate matter for global health applications, Atmos. Meas. Tech., 8, 505–521, https://doi.org/10.5194/amt-8-505-2015, 2015
Manfred, K. M., Washenfelder, R. A., Wagner, N. L., Adler, G., Erdesz, F., Womack, C. C., Lamb, K. D., Schwarz, J. P., Franchin, A., Selimovic, V., Yokelson, R. J., and Murphy, D. M.: Investigating biomass burning aerosol morphology using a laser imaging nephelometer, Atmos. Chem. Phys., 18, 1879–1894, https://doi.org/10.5194/acp-18-1879-2018, 2018
Snider, Graydon & Weagle, & Martin, Randall & Donkelaar, van & Conrad, & Cunningham, & Gordon, Christopher & Zwicker, & Akoshile, & Artaxo, Paulo & Anh, & Brook, Anna & Dong, & Garland, Rebecca & Greenwald, & Griffith, Derek & He, Yijun & Holben, & Kahn, Ralph & Liu, Yang. (2015). SPARTAN: A global network to evaluate and enhance satellite-based estimates of ground-level particulate matter for global health applications. Atmospheric Measurement Techniques. 8. 505-521. https://doi.org/10.5194/amt-8-505-2015
Katherine M. Manfred, Rebecca A. Washenfelder , Nicholas L. Wagner, Gabriela Adler, Frank Erdesz , Caroline C. Womack, Kara D. Lamb, Joshua P. Schwarz, Alessandro Franchin, Vanessa Selimovic, Robert J. Yokelson, Daniel M. Murphy; Investigating biomass burning aerosol morphology using a laser imaging nephelometer. Atmos. Chem. Phys. Discuss., 2017, https://doi.org/10.5194/acp-2017-842
Jordan, C. E., Stauffer, R. M., Lamb, B. T., Hudgins, C. H., Thornhill, K. L., Schuster, G. L., Moore, R. H., Crosbie, E. C., Winstead, E. L., Anderson, B. E., Martin, R. F., Shook, M. A., Ziemba, L. D., Beyersdorf, A. J., Robinson, C. E., Corr, C. A., and Tzortziou, M. A.: New in situ aerosol hyperspectral optical measurements over 300–700 nm – Part 1: Spectral Aerosol Extinction (SpEx) instrument field validation during the KORUS-OC cruise, Atmos. Meas. Tech., 14, 695–713, https://doi.org/10.5194/amt-14-695-2021, 2021
Jordan, C. E., Stauffer, R. M., Lamb, B. T., Novak, M., Mannino, A., Crosbie, E. C., Schuster, G. L., Moore, R. H., Hudgins, C. H., Thornhill, K. L., Winstead, E. L., Anderson, B. E., Martin, R. F., Shook, M. A., Ziemba, L. D., Beyersdorf, A. J., Robinson, C. E., Corr, C. A., and Tzortziou, M. A.: New in situ aerosol hyperspectral optical measurements over 300–700 nm – Part 2: Extinction, total absorption, water- and methanol-soluble absorption observed during the KORUS-OC cruise, Atmos. Meas. Tech., 14, 715–736, https://doi.org/10.5194/amt-14-715-2021, 2021
Nir Bluvshtein, J. Michel Flores, Lior Segev, Yinon Rudich; A new approach for measuring the UV-Vis optical properties of ambient aerosols; Atmos. Meas. Tech. Discuss, 2016, https://doi.org/10.5194/amt-2016-66
Xuezhe Xu, Weixiong Zhao, Bo Fang, Jiacheng Zhou, Shuo Wang, Weijun Zhang, Dean S. Venables, and Weidong Chen, “Three-wavelength cavity-enhanced albedometer for measuring wavelength-dependent optical properties and single-scattering albedo of aerosols,” Opt. Express 26, 33484-33500 (2018). https://doi.org/10.1364/OE.26.033484
Kalbermatter, D. M., Močnik, G., Drinovec, L., Visser, B., Röhrbein, J., Oscity, M., Weingartner, E., Hyvärinen, A.-P., and Vasilatou, K.: Comparing black-carbon- and aerosol-absorption-measuring instruments – a new system using lab-generated soot coated with controlled amounts of secondary organic matter, Atmos. Meas. Tech., 15, 561–572, 2022 https://doi.org/10.5194/amt-15-561-2022
Bluvshtein, N., Flores, J. M., Segev, L., and Rudich, Y.: A new approach for retrieving the UV–vis optical properties of ambient aerosols, Atmos. Meas. Tech., 9, 3477–3490, 2016. https://doi.org/10.5194/amt-9-3477-2016
Brunner, C., Brem, B. T., Collaud Coen, M., Conen, F., Steinbacher, M., Gysel-Beer, M., and Kanji, Z. A.: The diurnal and seasonal variability of ice-nucleating particles at the High Altitude Station Jungfraujoch (3580 m a.s.l.), Switzerland, Atmos. Chem. Phys., 22, 7557–7573, 2022. https://doi.org/10.5194/acp-22-7557-2022
Cyril Brunner, Benjamin T. Brem, Martine Collaud Coen, Franz Conen, Maxime Hervo, Stephan Henne, Martin Steinbacher, Martin Gysel-Beer, and Zamin A. Kanji; The contribution of Saharan dust to the ice-nucleating particle concentrations at the High Altitude Station Jungfraujoch (3580 m a.s.l.), Switzerland. Atmos. Chem. Phys., 21, 18029–18053, 2021. https://doi.org/10.5194/acp-21-18029-2021
IN102: AirPhoton Size Scanning Nephelometer
The IN102 introduces a cyclone inlet to allow for sampling particles in a specific size range. We carefully monitor and adjust the instrument flow rate. In combination with the cyclone inlet, this allows us to measure particles separately at PM2.5 and PM10, the sizes most critical for air quality studies. This capability significantly enhances our precision and effectiveness in environmental monitoring and research applications.
Like the IN101 model it is small and compact and is enclosed in an environmentally protected case, ready for outdoor deployment in rugged conditions. Power requirements are 40W @ 120 VAC (60W Max) and input power options include: 110/240 VAC,50/60Hz with provided power supply, and regulated 12VDC from sampling station with provided power connector. Other powering options can be made available upon request such as operating from batteries or solar power. Optional heaters are available at the expense of additional power consumption.
Data sheet
- Dimensions: 9″ x 10″ x 24”
- Mass: 6.8 Kg
- Operating temperature: -30 to +45oC
- Wavelengths: 450, 532, and 632 nm
- Angular range: 7 to 90o ; 90 to1 70o
- Full scattering = forward + back scattering
- Standard range: 0.0-3,000Mm-1
- Extended range: 20,000Mm-1 (upon request)
- Lower detectable limit: <0.15 Mm-1 (at 60 sec AVG); < 0.06 Mm-1 for Backscattering (60 sec AVG)
- Clean air reference option provides automatic zero for span calibration
- Data Interfaces: 4GB SD card, RS485 (optional)
The IN102 can provide forward and back scatter measurements, three wavelenghts, high Speed fan, feedback flow control system and multiple Size bins.
We suggest the IN102 for high precision measurements with various size cut-offs under all conditions for air quality and health and climate applications.
- IN102 flyer – IN102 data sheet.pdf
- Nephelometers flyer – Nepehlometers data sheet.pdf
Fatimah Dinan Qonitan1* , Puji Lestari 2 , and Haryo S.; Evaluation of continuous and filter-based methods for measuring pm2.5 mass concentration in bandung Urban area; Tomo3 Master Program of Environmental Engineering Faculty of Civil and Environmental Engineering, Institut Teknologi Bandung Jalan Ganesha No. 10, Bandung 40132. https://multisite.itb.ac.id/ftsl/wp-content/uploads/sites/8/2015/11/E5_Fatimah-Dinan-et.-al._Evaluation-of-Continuous-and-Filter.pdf
Bazo, J.V. Martins, D. Perez-Ramirez, A. Valenzuela, G. Titos, A. Cazorla, D. Fuertes, M. Weiss, A. Turpie, C. Li, F.J. García-Izquierdo, I. Foyo-Moreno, L. Alados-Arboledas, F.J. Olmo, Optimization of the Polarized Imaging Nephelometer (PI-Neph) for continuous monitoring of multiwavelength aerosol phase functions in support of space polarimetry missions, Atmospheric Environment, Volume 316, 2024, 120181, ISSN 1352-2310, https://doi.org/10.1016/j.atmosenv.2023.120181
Snider, G., Weagle, C. L., Martin, R. V., van Donkelaar, A., Conrad, K., Cunningham, D., Gordon, C., Zwicker, M., Akoshile, C., Artaxo, P., Anh, N. X., Brook, J., Dong, J., Garland, R. M., Greenwald, R., Griffith, D., He, K., Holben, B. N., Kahn, R., Koren, I., Lagrosas, N., Lestari, P., Ma, Z., Vanderlei Martins, J., Quel, E. J., Rudich, Y., Salam, A., Tripathi, S. N., Yu, C., Zhang, Q., Zhang, Y., Brauer, M., Cohen, A., Gibson, M. D., and Liu, Y.: SPARTAN: a global network to evaluate and enhance satellite-based estimates of ground-level particulate matter for global health applications, Atmos. Meas. Tech., 8, 505–521, https://doi.org/10.5194/amt-8-505-2015, 2015
Manfred, K. M., Washenfelder, R. A., Wagner, N. L., Adler, G., Erdesz, F., Womack, C. C., Lamb, K. D., Schwarz, J. P., Franchin, A., Selimovic, V., Yokelson, R. J., and Murphy, D. M.: Investigating biomass burning aerosol morphology using a laser imaging nephelometer, Atmos. Chem. Phys., 18, 1879–1894, https://doi.org/10.5194/acp-18-1879-2018, 2018
Snider, Graydon & Weagle, & Martin, Randall & Donkelaar, van & Conrad, & Cunningham, & Gordon, Christopher & Zwicker, & Akoshile, & Artaxo, Paulo & Anh, & Brook, Anna & Dong, & Garland, Rebecca & Greenwald, & Griffith, Derek & He, Yijun & Holben, & Kahn, Ralph & Liu, Yang. (2015). SPARTAN: A global network to evaluate and enhance satellite-based estimates of ground-level particulate matter for global health applications. Atmospheric Measurement Techniques. 8. 505-521. https://doi.org/10.5194/amt-8-505-2015
Katherine M. Manfred, Rebecca A. Washenfelder , Nicholas L. Wagner, Gabriela Adler, Frank Erdesz , Caroline C. Womack, Kara D. Lamb, Joshua P. Schwarz, Alessandro Franchin, Vanessa Selimovic, Robert J. Yokelson, Daniel M. Murphy; Investigating biomass burning aerosol morphology using a laser imaging nephelometer. Atmos. Chem. Phys. Discuss., 2017, https://doi.org/10.5194/acp-2017-842
Jordan, C. E., Stauffer, R. M., Lamb, B. T., Hudgins, C. H., Thornhill, K. L., Schuster, G. L., Moore, R. H., Crosbie, E. C., Winstead, E. L., Anderson, B. E., Martin, R. F., Shook, M. A., Ziemba, L. D., Beyersdorf, A. J., Robinson, C. E., Corr, C. A., and Tzortziou, M. A.: New in situ aerosol hyperspectral optical measurements over 300–700 nm – Part 1: Spectral Aerosol Extinction (SpEx) instrument field validation during the KORUS-OC cruise, Atmos. Meas. Tech., 14, 695–713, https://doi.org/10.5194/amt-14-695-2021, 2021
Jordan, C. E., Stauffer, R. M., Lamb, B. T., Novak, M., Mannino, A., Crosbie, E. C., Schuster, G. L., Moore, R. H., Hudgins, C. H., Thornhill, K. L., Winstead, E. L., Anderson, B. E., Martin, R. F., Shook, M. A., Ziemba, L. D., Beyersdorf, A. J., Robinson, C. E., Corr, C. A., and Tzortziou, M. A.: New in situ aerosol hyperspectral optical measurements over 300–700 nm – Part 2: Extinction, total absorption, water- and methanol-soluble absorption observed during the KORUS-OC cruise, Atmos. Meas. Tech., 14, 715–736, https://doi.org/10.5194/amt-14-715-2021, 2021
Nir Bluvshtein, J. Michel Flores, Lior Segev, Yinon Rudich; A new approach for measuring the UV-Vis optical properties of ambient aerosols; Atmos. Meas. Tech. Discuss, 2016, https://doi.org/10.5194/amt-2016-66
Xuezhe Xu, Weixiong Zhao, Bo Fang, Jiacheng Zhou, Shuo Wang, Weijun Zhang, Dean S. Venables, and Weidong Chen, “Three-wavelength cavity-enhanced albedometer for measuring wavelength-dependent optical properties and single-scattering albedo of aerosols,” Opt. Express 26, 33484-33500 (2018). https://doi.org/10.1364/OE.26.033484
Kalbermatter, D. M., Močnik, G., Drinovec, L., Visser, B., Röhrbein, J., Oscity, M., Weingartner, E., Hyvärinen, A.-P., and Vasilatou, K.: Comparing black-carbon- and aerosol-absorption-measuring instruments – a new system using lab-generated soot coated with controlled amounts of secondary organic matter, Atmos. Meas. Tech., 15, 561–572, 2022 https://doi.org/10.5194/amt-15-561-2022
Bluvshtein, N., Flores, J. M., Segev, L., and Rudich, Y.: A new approach for retrieving the UV–vis optical properties of ambient aerosols, Atmos. Meas. Tech., 9, 3477–3490, 2016. https://doi.org/10.5194/amt-9-3477-2016
Brunner, C., Brem, B. T., Collaud Coen, M., Conen, F., Steinbacher, M., Gysel-Beer, M., and Kanji, Z. A.: The diurnal and seasonal variability of ice-nucleating particles at the High Altitude Station Jungfraujoch (3580 m a.s.l.), Switzerland, Atmos. Chem. Phys., 22, 7557–7573, 2022. https://doi.org/10.5194/acp-22-7557-2022
Cyril Brunner, Benjamin T. Brem, Martine Collaud Coen, Franz Conen, Maxime Hervo, Stephan Henne, Martin Steinbacher, Martin Gysel-Beer, and Zamin A. Kanji; The contribution of Saharan dust to the ice-nucleating particle concentrations at the High Altitude Station Jungfraujoch (3580 m a.s.l.), Switzerland. Atmos. Chem. Phys., 21, 18029–18053, 2021. https://doi.org/10.5194/acp-21-18029-2021
IN102Ex: AirPhoton Extended Range Size Scanning Nephelometer
The IN102Ex Size Scanning Nephelometer extends the capabilities of our IN102 nephelometer aerosol to sample in the range from PM1 size bin to PM10. The additional range of the measurements allows us to derive the full particle size distribution, making this model unique for scientific research. We use the same feedback flow control system as described above for the IN102.
It is recommended for high precision measurements for various size cut-offs under all conditions for air quality & health and climate applications. The enhanced capabilities of the IN102Ex provide researchers with more detailed and precise data, which is crucial for advanced research in these domains. We are very proud of this advancement, demonstrating the capability of our IN102 Extended range nephelometer to retrieve a full aerosol size distribution.
Dual pressure taps in inlet to provide accurate flow monitoring
Data sheet
- Dimensions: 9″ x 10″ x 24”
- Mass: 6.8 Kg
- Operating temperature: -30 to +45oC
- Wavelengths: 450, 532, and 632 nm
- Angular range: 7 to 90o ; 90 to1 70o
- Full scattering = forward + back scattering
- Standard range: 0.0-3,000Mm-1
- Extended range: 20,000Mm-1 (upon request)
- Lower detectable limit: <0.15 Mm-1 (at 60 sec AVG); < 0.06 Mm-1 for Backscattering (60 sec AVG)
- Clean air reference option provides automatic zero for span calibration
- Data Interfaces: 4GB SD card, RS485 (optional)
The IN102Ex provides forward and back scatter measurements, three wavelenghts, high-speed fan, feedback flow control system, multiple Size bins and also the unique ability to determine size distribution.
We suggest the IN102Ex in high precision measurements for various size cut-offs under all conditions for air quality & health and climate applications with ability to obtain size distribution.
- IN102Ex flyer – IN102Ex data sheet.pdf
- Nephelometers flyer – Nephelometers data sheet.pdf
Fatimah Dinan Qonitan1* , Puji Lestari 2 , and Haryo S.; Evaluation of continuous and filter-based methods for measuring pm2.5 mass concentration in bandung Urban area; Tomo3 Master Program of Environmental Engineering Faculty of Civil and Environmental Engineering, Institut Teknologi Bandung Jalan Ganesha No. 10, Bandung 40132. https://multisite.itb.ac.id/ftsl/wp-content/uploads/sites/8/2015/11/E5_Fatimah-Dinan-et.-al._Evaluation-of-Continuous-and-Filter.pdf
Bazo, J.V. Martins, D. Perez-Ramirez, A. Valenzuela, G. Titos, A. Cazorla, D. Fuertes, M. Weiss, A. Turpie, C. Li, F.J. García-Izquierdo, I. Foyo-Moreno, L. Alados-Arboledas, F.J. Olmo, Optimization of the Polarized Imaging Nephelometer (PI-Neph) for continuous monitoring of multiwavelength aerosol phase functions in support of space polarimetry missions, Atmospheric Environment, Volume 316, 2024, 120181, ISSN 1352-2310, https://doi.org/10.1016/j.atmosenv.2023.120181
Snider, G., Weagle, C. L., Martin, R. V., van Donkelaar, A., Conrad, K., Cunningham, D., Gordon, C., Zwicker, M., Akoshile, C., Artaxo, P., Anh, N. X., Brook, J., Dong, J., Garland, R. M., Greenwald, R., Griffith, D., He, K., Holben, B. N., Kahn, R., Koren, I., Lagrosas, N., Lestari, P., Ma, Z., Vanderlei Martins, J., Quel, E. J., Rudich, Y., Salam, A., Tripathi, S. N., Yu, C., Zhang, Q., Zhang, Y., Brauer, M., Cohen, A., Gibson, M. D., and Liu, Y.: SPARTAN: a global network to evaluate and enhance satellite-based estimates of ground-level particulate matter for global health applications, Atmos. Meas. Tech., 8, 505–521, https://doi.org/10.5194/amt-8-505-2015, 2015
Manfred, K. M., Washenfelder, R. A., Wagner, N. L., Adler, G., Erdesz, F., Womack, C. C., Lamb, K. D., Schwarz, J. P., Franchin, A., Selimovic, V., Yokelson, R. J., and Murphy, D. M.: Investigating biomass burning aerosol morphology using a laser imaging nephelometer, Atmos. Chem. Phys., 18, 1879–1894, https://doi.org/10.5194/acp-18-1879-2018, 2018
Snider, Graydon & Weagle, & Martin, Randall & Donkelaar, van & Conrad, & Cunningham, & Gordon, Christopher & Zwicker, & Akoshile, & Artaxo, Paulo & Anh, & Brook, Anna & Dong, & Garland, Rebecca & Greenwald, & Griffith, Derek & He, Yijun & Holben, & Kahn, Ralph & Liu, Yang. (2015). SPARTAN: A global network to evaluate and enhance satellite-based estimates of ground-level particulate matter for global health applications. Atmospheric Measurement Techniques. 8. 505-521. https://doi.org/10.5194/amt-8-505-2015
Katherine M. Manfred, Rebecca A. Washenfelder , Nicholas L. Wagner, Gabriela Adler, Frank Erdesz , Caroline C. Womack, Kara D. Lamb, Joshua P. Schwarz, Alessandro Franchin, Vanessa Selimovic, Robert J. Yokelson, Daniel M. Murphy; Investigating biomass burning aerosol morphology using a laser imaging nephelometer. Atmos. Chem. Phys. Discuss., 2017, https://doi.org/10.5194/acp-2017-842
Jordan, C. E., Stauffer, R. M., Lamb, B. T., Hudgins, C. H., Thornhill, K. L., Schuster, G. L., Moore, R. H., Crosbie, E. C., Winstead, E. L., Anderson, B. E., Martin, R. F., Shook, M. A., Ziemba, L. D., Beyersdorf, A. J., Robinson, C. E., Corr, C. A., and Tzortziou, M. A.: New in situ aerosol hyperspectral optical measurements over 300–700 nm – Part 1: Spectral Aerosol Extinction (SpEx) instrument field validation during the KORUS-OC cruise, Atmos. Meas. Tech., 14, 695–713, https://doi.org/10.5194/amt-14-695-2021, 2021
Jordan, C. E., Stauffer, R. M., Lamb, B. T., Novak, M., Mannino, A., Crosbie, E. C., Schuster, G. L., Moore, R. H., Hudgins, C. H., Thornhill, K. L., Winstead, E. L., Anderson, B. E., Martin, R. F., Shook, M. A., Ziemba, L. D., Beyersdorf, A. J., Robinson, C. E., Corr, C. A., and Tzortziou, M. A.: New in situ aerosol hyperspectral optical measurements over 300–700 nm – Part 2: Extinction, total absorption, water- and methanol-soluble absorption observed during the KORUS-OC cruise, Atmos. Meas. Tech., 14, 715–736, https://doi.org/10.5194/amt-14-715-2021, 2021
Nir Bluvshtein, J. Michel Flores, Lior Segev, Yinon Rudich; A new approach for measuring the UV-Vis optical properties of ambient aerosols; Atmos. Meas. Tech. Discuss, 2016, https://doi.org/10.5194/amt-2016-66
Xuezhe Xu, Weixiong Zhao, Bo Fang, Jiacheng Zhou, Shuo Wang, Weijun Zhang, Dean S. Venables, and Weidong Chen, “Three-wavelength cavity-enhanced albedometer for measuring wavelength-dependent optical properties and single-scattering albedo of aerosols,” Opt. Express 26, 33484-33500 (2018). https://doi.org/10.1364/OE.26.033484
Kalbermatter, D. M., Močnik, G., Drinovec, L., Visser, B., Röhrbein, J., Oscity, M., Weingartner, E., Hyvärinen, A.-P., and Vasilatou, K.: Comparing black-carbon- and aerosol-absorption-measuring instruments – a new system using lab-generated soot coated with controlled amounts of secondary organic matter, Atmos. Meas. Tech., 15, 561–572, 2022 https://doi.org/10.5194/amt-15-561-2022
Bluvshtein, N., Flores, J. M., Segev, L., and Rudich, Y.: A new approach for retrieving the UV–vis optical properties of ambient aerosols, Atmos. Meas. Tech., 9, 3477–3490, 2016. https://doi.org/10.5194/amt-9-3477-2016
Brunner, C., Brem, B. T., Collaud Coen, M., Conen, F., Steinbacher, M., Gysel-Beer, M., and Kanji, Z. A.: The diurnal and seasonal variability of ice-nucleating particles at the High Altitude Station Jungfraujoch (3580 m a.s.l.), Switzerland, Atmos. Chem. Phys., 22, 7557–7573, 2022. https://doi.org/10.5194/acp-22-7557-2022
Cyril Brunner, Benjamin T. Brem, Martine Collaud Coen, Franz Conen, Maxime Hervo, Stephan Henne, Martin Steinbacher, Martin Gysel-Beer, and Zamin A. Kanji; The contribution of Saharan dust to the ice-nucleating particle concentrations at the High Altitude Station Jungfraujoch (3580 m a.s.l.), Switzerland. Atmos. Chem. Phys., 21, 18029–18053, 2021. https://doi.org/10.5194/acp-21-18029-2021
Add-ons
CR100 model: Clean Air Reference system
The CR100 clean air reference system is designed to compensate for potential calibration drift of the IN101 or IN102 nephelometer. The CR100 pumps ambient air through a high quality HEPA filter that removes aerosol particles from the air to a level that the clean air can be used as a Rayleigh scattering reference for the nephelometer. It can be used as a semi-permanent attachment to the body of the nephelometer or as a portable bench top reference system. The figure at left shows the CR100 system mounted on the body of a IN101 nephelometer.
Instrument carrying case
A custom-made carrying case is available for purchase to use with the IN101 nephelometer and its accessories. The case dimensions are: 31.3″x20.4″x12.2″ and is outfitted with wheels and a retractable handle for easy transport. Figure 9 shows the CC101 carrying case with a IN101 nephelometer and its accessories including the CR100 clean air system.
Communications module
The Communications Module allows remote communication with the instrument, user can script files to the instrument to change and modify sampling protocols. Users can also download operational status and house keeping information about the instrument. Works both on cellular and WiFi networks. The dimensions are 7” x 5” x 1.5” and it weights around 5kg.